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Laboratory experiments simulating gravity-driven coastal surface currents produced
by estuarine fresh-water discharges into the ocean are discussed. The currents are
generated inside a rotating tank filled with salt water by the continuous release of
buoyant fresh water from a small source at the fluid surface. The height, the width
and the length of the currents are studied as a function of the background rotation
rate, the volumetric discharge rate and the density difference at the source. Two
complementary experimental data sets are discussed and compared with each other.
One set of experiments was carried out in a tank of diameter 1 m on a small-scale
rotating turntable. The second set of experiments was conducted at the large-scale
Coriolis Facility (LEGI, Grenoble) which has a tank of diameter 13 m. A simple
geostrophic model predicting the current height, width and propagation velocity is
developed. The experiments and the model are compared with each other in terms
of a set of non-dimensional parameters identified in the theoretical analysis of the
problem. These parameters enable the corresponding data of the large-scale and the
small-scale experiments to be collapsed onto a single line. Good agreement between
the model and the experiments is found.

1. Introduction
When estuarine water is discharged into the coastal zone, gravity-driven surface

flows can be established. These flows develop as a consequence of the density difference
between the buoyant estuarine fresh water and the denser, salty ocean water. For
sufficiently large discharge rates, i.e. when the current exceeds length scales larger
than the Rossby deformation scale, the current dynamics are affected by the Coriolis
force arising from the rotation of the earth. As a result the discharged fresh water
is confined to the coastal zone, where it forms a current flowing along the coast.
Typical examples are, for instance, the Columbia River Plume (Hickey et al. 1998),
the Delaware Coastal Current (Münchow & Garvine 1993a, b), the Hudson River
Plume (e.g. Bowman & Iverson 1978), the Chesapeake Bay Outflow (Rennie, Largier
& Lentz 1999), the Tsugaru (e.g. Kawasaki & Sugimoto 1984) the Algerian Current,
the East Greenland Current, the Leeuwinn Current (Chabert D’Hieres, Didelle &
Obaton 1991) and outflows from certain fjords (Griffiths & Linden 1981).

A substantial number of publications have previously presented results from field
experiments (Hogg & Johns 1995), computational results (Blumberg, Signell & Jenter
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1993; Batteen 1997; Boyer, Haidvogel & Pérenne 2001) and theoretical studies (Hacker
& Linden 2002; Martin & Lane-Serff 2005; Martin, Smeed & Lane-Serff 2005) on the
investigation of coastal currents. Similarly, a large number of experimental laboratory
studies have been described in the literature (e.g. Griffiths & Hopfinger 1983; Griffiths
1986; Davies, Jacobs & Mofor 1993; Simpson 1997; Thomas & Linden 1998; Boyer
et al. 2001; Avicola & Huq 2002; Avicola & Huq 2003a, b; Lentz & Helfrich 2002;
Rivas, Velasco Fuentes & Ochoa 2005; Horner-Devine et al. 2006).

Davies et al. (1993) and, more recently, Lentz & Helfrich (2002) derived scaling
relations for the current width, depth and velocity as a function of the governing
independent parameters. However, these relations were based on scaling arguments
and, hence, did not yield the constants of proportionality required for comparison
with experiment. Lentz & Helfrich (2002) stated that these constants had to be
inferred from the experimental data. We will derive a complete analytical description
of the flow, under the assumption of geostrophy and zero potential vorticity, which
readily yields values for the constants of proportionality. The expressions that we
obtain are similar to those of Avicola & Huq (2002), who derived a model based on
the assumption that the frontal dynamics are those of a Margules front. Their results
will be discussed in more detail after we have presented our model.

The predictions of the geostrophic model derived in the present paper will be com-
pared with the experimental data obtained in small-scale and large-scale experiments.
Comparison between experiment and theory is facilitated by a set of non-dimensional
parameters identified in the theoretical analysis of the flow. This comparison will
reveal that these parameters enable the corresponding data from small-scale and
large-scale experiments to be collapsed and that the experiments agree well with our
simple geostrophic model.

2. Experimental set-up and techniques
Two complementary sets of experiments, using different experimental facilities, were

carried out. The two facilities had substantially different spatial scales, enabling the
investigation of a wide range of the independent experimental parameters. The small-
scale laboratory experiments were performed on a rotating turntable supporting a
fluid-filled tank with diameter about 1 m. The large-scale experiments were conducted
at the Coriolis Facility (LEGI, Grenoble, France) using the 13 m rotating basin.

The procedures and techniques employed during the small-scale experiments are
described in detail below. The experimental set-up at the Coriolis Facility was designed
to mirror the small-scale study on a larger scale. We include additional comments on
the techniques used in the large-scale experiments to highlight the differences from
the small-scale study.

2.1. Small-scale experiments

The goal of the experiments was to simulate estuarine discharges of buoyant fresh
water into an environment of salty, denser, ocean water. The arrangement of the
experimental small-scale facility is shown in figure 1.

The experiments were carried out in a transparent circular acrylic tank with radius
RS = 0.4475 ± 0.0005 m. The tank was placed on a rotating turntable to simulate the
rotation of the earth and introduce Coriolis effects on the flow. The rotation rate,
Ω , of the turntable was constant for each experiment. A total of 66 small-scale
experiments were performed. The range over which Ω was varied and other relevant
experimental parameters are summarized in table 1.
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Figure 1. The small-scale experimental set-up.

Small-scale experiments Large-scale experiments

Radius RS = 0.4475 m RL = 6.5m
Rotation rate Ω 0.5 rad s−1 � Ω � 2.5 rad s−1 0.0196 rad s−1 � Ω � 0.157 rad s−1

Flow rate q0 3.18 cm3 s−1 � q0 � 28.2 cm3 s−1 200 cm3 s−1 � q0 � 3972 cm3 s−1

Reduced grav. accel. g′ 1.9 cm s−2 � g′ � 86 cm s−2 3.5 cm s−2 � g′ � 30.2 cm s−2

I , see (3.23) 0.0788 � I � 3.317 0.00732 � I � 0.388

Table 1. Summary of the ranges of the independent parameters in the small-scale and
large-scale experiments.

The tank was filled with salt water of density ρ2 representing the ocean water.
Fresh water of density ρ1, with ρ1 <ρ2, was released from a small source mounted at
the wall of the tank to simulate estuarine discharges. Fluid was released continuously
and with a constant volumetric discharge rate, q0 (see table 1). The density difference
between the fresh water and the salt water is characterized in terms of the reduced
gravitational acceleration, g′, defined by

g′ =
ρ2 − ρ1

ρ1

g, (2.1)

with g = 981 cm s−2.
The depth of the salt water inside the tank was typically 10–15 cm. It was verified

experimentally that this depth was sufficient to ensure that the current properties
were not measurably affected by the depth of the ambient salt water. The source
from which the fresh fluid was released was adjusted to be level with the surface of
the dense salt water. The source outlet was circular and of diameter 1 cm. The fluid
was supplied to the source by means of a calibrated peristaltic pump from a reservoir
mounted on the turntable. The fluid was discharged vertically upwards, rather than
horizontally as would be the case in the natural environment. The purpose of the
vertical discharge direction was to minimize momentum-flux effects and the mixing
of fresh water and salt water near the source. The salt water inside the tank was
in solid-body rotation prior to the start of the release of fluid from the source. For
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visualization purposes the fresh water discharging at the source was dyed with food
colouring while the ambient salt water was clear.

The experiments were filmed with two video cameras simultaneously. One camera
was rigidly mounted on the superstructure of the rotating turntable and filmed
the current from above the centre of the tank (figure 1). The second camera was
positioned next to the turntable and filmed the flow through the transparent sidewall
of the acrylic tank. This camera thus scanned the current height at the wall of the
tank once per turntable revolution.

2.2. Large-scale experiments

The Coriolis Facility of the Laboratoire des Ecoulements Géophysiques et Industriels
(LEGI) at Grenoble, France, is the world’s largest rotating platform for the simulation
of oceanographic flows in the laboratory. The total diameter of the platform is
14 m and the radius of the steel basin supported by the facility is RL = 6.5 m. The
Coriolis Facility enables experiments which are to leading order non-viscous and
dominated by background rotation, i.e. the Reynolds number is large while the
Rossby number is small. Details of the technical specifications of the facility can be
found at http://www.coriolis-legi.org.

We carried out 34 large-scale experiments. The ranges over which the experimental
parameters were varied during these experiments are included in table 1. Each
experiment on the large-scale facility was filmed with seven video cameras simultan-
eously. These cameras were mounted at various appropriate locations on the rotating
platform. Some cameras monitored sections of the tank from a few metres vertically
above the fluid surface. Others were positioned at windows in the sidewall of the
tank. Additionally several conductivity probes and ultrasonic profilers were mounted
on the facility to measure the internal velocity and density structure of the currents.

The salt water in the tank was approximately 80 cm deep. Fresh fluid was supplied
to the source mounted at the wall of the tank from storage reservoirs housed in
the basement of the laboratory. The source and the supply system were made from
commercially available drainage pipes of approximate diameter 15 cm.

3. Theoretical description of the problem
Figure 2 illustrates the geometry used to describe the motion of the current along

the wall of the tank. The curvature of the circular wall is neglected, and a Cartesian
coordinate system x, y, z is introduced as indicated in the figure. The origin of the
coordinate system coincides with the outlet of the source from which the buoyant,
fresh, fluid discharges. It is assumed that the velocity components in the y- and
z-directions are negligible in comparison to the velocity component u in the x-
direction. Further, we neglect all variations in the x-coordinate direction so that
u = (u(y, z), 0, 0).

The pressure, p, is given by the hydrostatic relation

p =

{
gρ1(η − z), −h<z <η,

gρ1(h + η) − gρ2(z + h), z < −h,
(3.1)

where η = η(y) represents the free-surface elevation above z = 0 and the pressure at
the free surface z = η is taken as p =0.

We consider that case for which the ambient fluid is infinitely deep, so that there is
no interaction between the current and the bottom of the tank. We also assume that
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Figure 2. The nomenclature employed to develop the theoretical model for the current.

the current is in geostrophic balance,

2ρ1Ωu = −∂p

∂y
, (3.2)

where Ω is the rotation rate. From (3.1) one obtains

∂p

∂y
=

⎧⎪⎨
⎪⎩

gρ1

∂η

∂y
, −h < z < η,

g(ρ1 − ρ2)
∂h

∂y
+ gρ1

∂η

∂y
, z < −h.

(3.3)

In the infinitely deep lower layer, i.e. for z < −h, there is no flow. Hence there the
pressure gradient ∂p/∂y = 0, and (3.3) for the lower layer yields

ρ1

∂η

∂y
= (ρ2 − ρ1)

∂h

∂y
. (3.4)

Comparison of (3.4) with the pressure gradient ∂p/∂y for −h<z <η in (3.3) then
reveals that, in the current,

∂p

∂y
= (ρ2 − ρ1)g

∂h

∂y.
. (3.5)

Substituting (3.5) into (3.2) gives

u = − g′

2Ω

∂h

∂y
, (3.6)

where g′ is defined by (2.1). The potential vorticity, q , in the current is

q =
2Ω − ∂u/∂y

h
. (3.7)

The source is small so that, as a first approximation, q = 0 for the discharging fluid. In
a real flow, such as a river outflow, the fluid is released from a source of finite depth.
However, real flows tend to reduce in depth as they leave the source. This would
suggest that, in practice, the assumption of vanishing potential vorticity is justified.
Note also that the results of Martin, Smeed & Lane-Serff (2005) suggest that the
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potential vorticity does not have a major effect on the overall speed and shape of
the current. With q = 0 and (3.7), conservation of potential vorticity then implies that
∂u/∂y = 2Ω . Differentiating (3.6) with respect to y and then substituting for ∂u/∂y

in (3.7) gives

∂2h

∂y2
= −4Ω2

g′ . (3.8)

Integration of (3.8) yields

h = −4Ω2

2g′ y2 + cy + d, (3.9)

where c and d are constants. Conservation of angular momentum implies that u = 0
at the wall y = 0. Hence, (3.6) implies ∂h/∂y =0. Thus c = 0 and

h = h0 − 2Ω2

g′ y2, (3.10)

where h0 is the (maximum) depth at the wall. Reference to (3.8) and (3.6) shows that
this parabolic depth profile (3.10) implies that the current velocity

u = 2Ωy (3.11)

increases linearly with distance from the wall.
The current has maximum width w0 where the interface (3.10) intersects the fluid

surface, i.e when h (y = w0) = 0. Thus (3.10) gives

w0 =

(
g′h0

2Ω2

)1/2

. (3.12)

Assuming that the width and depth of the current at any downstream location
remain constant in time, continuity requires that the volumetric flow rate, q0, from
the source must equal the volumetric flow rate across any cross-section of the current.
Then

q0 =

∫ w0

0

h(y)u(y) dy, (3.13)

is independent of x. Substituting (3.10) and (3.11) into (3.13), one obtains after
integration

q0 =

(
h0Ωw2

0 − Ω3w4
0

g′

)
. (3.14)

From (3.12) and (3.14) one finds

h0 =

(
4Ωq0

g′

)1/2

, (3.15)

and then from (3.15) and (3.12)

w0 =

(
g′q0

Ω3

)1/4

. (3.16)

The total current volume V is given by

V = q0t = l

∫ w0

0

h(y) dy, (3.17)
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where l represents the length of the current. Carrying out the integration using (3.10)
and then introducing (3.12) and (3.15) leads to

V = q0t = l
4q

3/4
0

3g′1/4Ω1/4
. (3.18)

Equation (3.18) implies that the current travels at constant speed l/t = u0 and that
the length l is given by

l =
3

4
(q0g

′Ω)1/4t. (3.19)

These scalings for the width, depth and velocity of the current are the same as
those given in Davies et al. (1993) and, more recently, by Lentz & Helfrich (2002).
However, since these authors used only scaling arguments they could not give explicit
values for the constants in their expressions. The definition of Horner-Devine et al.
(2006) for the maximum depth in a geostrophic current is identical with the current
depth obtained from our model in (3.15). The model of Avicola & Huq (2002), which
is based on the assumption that the frontal dynamics are that of a Margules front,
also yields the same current depth as that in (3.15). In terms of our nomenclature
the current width derived by Avicola & Huq is w0 = (1/

√
2)(g′q0/Ω

3)1/4 and this
value is thus smaller by a factor 1/

√
2 = 0.707 than that found from (3.16). From

(3.19) one sees that the constant propagation speed of the current head in our
model is u0 = l/t = 3

4
(q0g

′Ω)1/4. In comparison, the speed of the current head found
by Avicola & Huq is u0 =

√
2(q0g

′Ω)1/4. Thus, their current speed is higher by a factor√
2/(3/4) = 1.89 than that predicted by the present model.
The results above can be conveniently expressed in dimensionless form. We use the

non-dimensional time T = Ωt and non-dimensionalize lengths by w0 = (g′q0/Ω
3)1/4.

The scale w0 is equivalent to the usual Rossby deformation scale,
√

g′h0/Ω , for the
flow based on the flow rate in the current. The deformation scale corresponds to
the usual adjustment length based on potential-vorticity conservation. This can be
seen as follows. Solving (3.15) for q0, substituting this expression into (3.19) and
then solving for l/t = u0 shows that u0 scales as

√
g′h0. Equation (3.12) immediately

reveals the usual adjustment scaling w0 ∝
√

g′h0/Ω . Together with q0 ∝ u0h0w0 the
two scalings for u0 and w0 imply q0 ∝

√
g′h0h0(

√
g′h0/Ω). By substituting h0 in

this expression by means of (3.15), rearranging and comparing with (3.16) one sees
that

√
g′h0/Ω ∝ (g′q0/Ω

3)1/4 = w0. Hence w0 is equivalent to the Rossby deformation
radius based on the depth of the current.

Using capital letters to denote non-dimensional variables, (3.19) is written as

L = 3
4
T . (3.20)

The dimensionless width is then given by

W = 1, (3.21)

and the dimensionless depth is

H = 2I 5/4. (3.22)

Reference to (3.15) and (3.16), or to (3.22) with H = h0/w0, reveals that the quantity

I =
Ωq

1/5
0

g′3/5
, (3.23)

is a dimensionless parameter that describes the aspect ratio, h0/w0, of the current.
Note that introducing the Coriolis parameter, f =2Ω , into our final expressions
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(3.15), (3.16) and (3.19) for the current depth, width and the length does not alter
the form of the non-dimensional current width in (3.21). Neither does it affect the
non-dimensional current depth given by (3.22) as long the definition of I in (3.23)
remains unchanged. In (3.20), which gives the non-dimensional current length, the
time T = Ωt would be replaced by f t .

One can define a Rossby number Ro as

Ro =
u0

Ωw0

, (3.24)

where u0 = l/t from (3.19), and a Froude number Fr as

Fr =
u0√
g′h0

. (3.25)

Using the expressions (3.15) for h0, (3.16) for w0 and (3.19) for u0 one finds

Ro = 3
4

= 0.75 (3.26)

and

Fr =
3

25/2
= 0.5303. (3.27)

The ratio of body forces and Coriolis forces is expressed by the ratio of the Rossby
number and the Froude number and, with (3.26) and (3.27), one finds that

Ro

Fr
=

25/2

4
=

√
2. (3.28)

If one uses the expressions of Avicola & Huq (2002) for the current width, depth
and propagation velocity to calculate the Rossby number, the Froude number and
the ratio of both, corresponding to the above expressions (3.26), (3.27) and (3.28), one
finds Ro = 2, Fr = 1 and, consequently, Ro/Fr =2.

The current velocity u0 = l/t from (3.19) together with (3.15) can also be used to
define a Reynolds number Re(w0, u0)

Re =
w0u0

ν
=

3q0
1/2g′1/2

4Ω1/2ν
. (3.29)

Finally one can define an Ekman number Ek(h0) as

Ek(h0) =
ν

f h0
2

=
νg′

2f 2q0

=
νg′

8Ω2q0

. (3.30)

Using the values given in table 1 together with ν =0.01 cm2 s−1 for the kinematic
viscosity of water, the small-scale experiments turn out to have Reynolds numbers in
the range 100 � Re(w0, u0) � 5200 while the corresponding range for the large-scale
experiments is 5000 � Re(w0, u0) � 185 000. Similarly, the small-scale experiments have
Ekman numbers in the range 1.34 × 10−5 � Ek(h0) � 1.34 × 10−1 while the large-scale
experiments have values in the range 4.47 × 10−5 � Ek(h0) � 4.91 × 10−1.

Finally, note that a comparison of (3.23) and (3.30) reveals that highest values of
I in our inviscid model always correspond to the lowest values of Ek and vice versa.
We expect that our inviscid model will describe the experimental data better when
viscosity effects are small, i.e. when the Ekman number is small or, equivalently, when
I is large. In particular, one sees from (3.22) that currents are shallow when I is
small. This means that the assumption that the currents are in geostrophic balance
will then no longer hold and our scaling relations will break down.
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4. Experimental results
4.1. Introductory remarks

Figure 3(a–c) shows flow visualizations that are typical examples of currents observed
in the small-scale facility for low, intermediate and high values of I . The pictures
were obtained with the corotating camera 1 (figure 1) and show the currents viewed
from above the circular tank, looking vertically downwards onto the fluid surface.
The dyed current fluid appears dark in the pictures. The location of the source, where
the buoyant current fluid is ejected, is indicated in figure 3(a) and it is the same in
figures 3(b, c). The turntable rotates anticlockwise. The currents propagate cycloni-
cally, i.e. also anticlockwise, around the circumference of the tank. The calibration
grid visible in each picture was attached to the table top underneath the transparent
bottom of the tank. The angle of each grid sector is 0.1 radians and the separation
between two successive calibration circles is 5 cm.

4.1.1. Qualitative aspects of the current shape: small-scale currents

A comparison of figures 3(a–c) reveals that the currents look qualitatively different
for different values of I . The current shapes shown are characteristic for the different
values of I . After some experience, it is possible to estimate the value of I for any
particular current by simple inspection of a flow visualization. Recall that, because
of (3.23) and (3.30), the lowest values of I correspond to the highest values of Ek

and vice versa. However, it is the currents, such as the one shown in figure 3(c),
having a low Ek (large I ) value which are most closely governed by geostrophy. For
such currents, the flow in the initial stage looks similar to the currents in figures 3(a)
and 3(b). However, at some point the frontal portion of the currents separates from
the source and is advected downstream with the flow. As a result a current with a
constant width, as predicted by our model, is left behind. We believe that it is the type
of current after the frontal portion has separated that represents a current closely
governed by a geostrophic balance and which is not significantly affected by viscous
effects. The currents in figures 3(a) and 3(b) do not have a constant width. The reason
for this is probably that the associated values of the Ekman number are too large
(low I ) and the currents are not sufficiently well governed by geostrophy. This will
be discussed in depth in § 4.5, where the data for the current width are analysed.

The observations have shown that anticyclonically (i.e. clockwise) spinning gyre is
formed at the upstream end of the current in the immediate vicinity of the source.
For the currents in figures 3(a) and 3(b) it was observed that the diameter of this
bulge region grows continuously with time; in these figures the diameter of the bulge
is about 25 cm. Similar gyres were observed and studied experimentally by Avicola
& Huq (2003b) and Horner-Devine et al. (2006). Nof & Pichevin (2001) investigated
the issue theoretically and predicted the existence of the growing, recirculating, bulge
region. As a consequence of the gyre formation some fluid is lost from the main body
of the current and this must result in discrepancies with the predictions of our model.
For instance, it is expected that drainage of fluid out of the main current will tend
to decrease the propagation speed of the current. Hence, the current will no longer
have the constant speed predicted by our model.

For the current in figure 3(c), with I = 2.776, a small gyre (diameter about 3–5 cm)
also exists. However, for this current with a high I value (low Ek), the gyre diameter
was observed to remain constant and so no fluid is lost from the main current.
Hence, currents with low Ekman number (high I ) will generally tend to be described
more accurately by our model. In comparison, one may calculate from the data in



44 P. J. Thomas and P. F. Linden

(a)

(b)

(c)

Approximate location of source outlet

Figure 3. Flow visualizations showing currents (dark fluid) flowing around the wall of the
circular tank in the small-scale facility. Typical shapes for different values of I are shown.
The turntable rotates anticlockwise. The currents also propagate anticlockwise, keeping the
wall to their right. (a) Low-I case: I = 0.0627, t ≈ 60 s, Ω = 0.5 rad s−1, g′ =86.3 cm s−2,
q0 = 20 cm3 s−1. (b) Intermediate-I case: I =0.3264, t ≈ 60 s, Ω = 0.5 rad s−1, g′ =2.26 cm s−2,
q0 = 28.12 cm3 s−1. (c) High-I case: I = 2.776, t ≈ 180 s, Ω =2.5 rad s−1, g′ =2.28 cm s−2,
q0 = 20 cm3 s−1.
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Figure 4. Part of a large-scale current in the Coriolis Facility.

table 1 in Avicola & Huq (2003b) that their experiments were in the parameter regime
0.137 � I � 0.397. Similarly, one determines 0.077 � I � 0.331 for the experiments of
Horner-Devine et al. (2006) from tables 1–3 in the appendix of their paper. Hence,
all the experiments of Avicola & Huq (2003b) and Horner-Devine et al. (2006) were
within the same parameter region as our currents shown here in figures 3(a) and 3(b).
None of their experiments had values as high as I = 2.776, the parameter regime of
the current in figure 3(c) where we observed a bulge with a constant diameter and
currents of constant width. It was noted that the separation of the frontal portion
of a current at high I , as in figure 3(c), often happens relatively late during the
experiment. Hence, in order to carry out further experiments in the parameter regime
of g′, q0 and Ω resulting in large I, i.e. ∼ 2–3, it would be desirable to have a larger
tank available than the 1 m diameter tank used in the present small-scale experiments.

4.1.2. Qualitative aspects of the current shape: large-scale currents

The large-scale currents observed in the Coriolis Facility look qualitatively very
similar to those that develop in the small-scale facility. A photograph displaying
part of a typical current during an experiment in the large-scale facility is shown in
figure 4. It shows the dyed current in the region just downstream of the source. The
source outlet is located at the wall of the tank, just to the right of the large circular
gyre which has developed in the vicinity of the source. On the photograph the current
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Figure 5. Typical raw data sets displaying the current length, l, as a function of time, t ,
for eight large-scale experiments with different flow rates, q0, but the same rotation rate,
Ω =0.1571 rad s−1, and equal reduced gravity, g′ =(3.57 ± 0.15) cm s−2. The numbers in the
key are the values of q0 in cm3 s−1.

is flowing away from the viewer. The exact experimental conditions relating to the
current shown are not available since they were not recorded when the picture was
taken. However, figure 4 reveals that the current is relatively narrow in comparison
to the gyre diameter near the source. Reference to the picture sequence for small-
scale currents in figure 3(a–c) suggests that I was of intermediate value because a
comparison of the large-scale current of figure 4 shows that it looks very similar to
the small-scale current with the intermediate value, I =0.3264, in figure 3(b).

4.2. Current length

Figure 5 shows eight typical raw-data sets for the current length l as a function of
time t . The data are from large-scale experiments with different volumetric discharge
rates q0 but equal rotation rate Ω = 0.1571 rad s−1 and equal reduced gravity
g′ = (3.57 ± 0.15) cm s−2. It can be seen that the currents with higher discharge rates
q0 propagate faster. Their velocity is almost constant during propagation along the
entire 40 m circumference of the tank. Currents with lower values of q0 initially have
an approximately constant propagation velocity but gradually begin to slow down
during the experiment.

Figure 6 redisplays the data of figure 5 in non-dimensional form. The solid
line superposed on the figure is the theoretical prediction L = 3

4
T from (3.20).

The figure reveals that experiment and theory are in quite good agreement. The
experimentally measured current length at early times T grows faster than predicted
but begins to slow down at later times. The reason for this initial velocity excess and
subsequent gradual deceleration will be discussed in § § 4.4.2 and 4.5.6.

Figures 7 and 8 display all the available data for the 66 small-scale experiments
and the 34 large-scale experiments, respectively. The figures give the non-dimensional
current length L as a function of the non-dimensional time T . The solid line
superposed onto each figure represents the theoretical prediction L = 3

4
T from (3.20).

Comparison of the two figures shows that they are very similar. In both cases
experiment and theory are in good agreement. Further inspection of figures 7 and
8 reveals that a superposition of the two figures collapses the two data sets onto
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Figure 6. The data for the current length, l, of figure 5 in non-dimensional form: the
non-dimensional current length, L, is shown as a function of the non-dimensional time, T , for
eight experiments with different flow rates q0 but equal rotation rate, Ω = 0.1571 rad s−1, and
equal reduced gravity, g′ =(3.57 ± 0.15) cm s−2. The numbers in the key are the values of q0 in
cm3 s−1.

each other. Hence the small-scale and large-scale experiments display corresponding
behaviour, suggesting that the dynamics of the experiments are the same at both scales.

The dashed line superposed onto figures 7 and 8 represents the theoretical result for
the current speed of Avicola & Huq (2002). Their results have been re-expressed in
our nomenclature, where the dashed line is given by L = 2T . This line was obtained by
interpreting the current speed c in expression (5) of Avicola & Huq (2002) as c = l/t ,
so that l = ct corresponds to expression (3.19) in the present paper. The current length
l was then non-dimensionalized using the Rossby deformation scale given in equation
(4) of Avicola & Huq (2002). Figure 7 shows that, for the small-scale experiments, our
model predicts the propagation of the current head slightly better overall than the
model of Avicola and Huq. For the large-scale data shown in figure 8 the prediction
of Avicola and Huq seems to give slightly better agreement. However, this apparent
better agreement is slightly misleading. As will be discussed in § 4.4.2, the currents
have, initially, a velocity excess due to the measured along-wall depth profile. If this is
taken into account then it appears justifiable to conclude that overall the experimental
data for the current speed, in both the small-scale and the large-scale experiments, is
in better agreement with our present model than with the model of Avicola & Huq
(2002).

4.3. Current velocity

Figure 9 shows examples of the ratio of the experimentally measured non-dimensional
mean velocity Ue

0 of the current head and the theoretically predicted current velocity
Ut

0 =L/T = 3
4

from (3.20). The velocity data shown were obtained from the analysis
of the eight experiments whose results were displayed in figures 5 and 6 (Ω =
0.1571 rad s−1, g′ =(3.57 ± 0.15) cm s−2).

It should be emphasized that Ue
0 is the mean velocity given by L/T and not the

instantaneous current velocity dL/dT . However, the curves for the mean velocity
shown in figure 9 are qualitatively similar to those one obtains for the instantaneous
current velocity by calculating [l(ti+1)−l(ti)]/(ti+1−ti) for a series of neighbouring data
points. We have not included these curves here because the velocity data determined
in this way are very sensitive to measurement errors and can fluctuate substantially.
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Figure 7. Summary of the data for the non-dimensionalized current length L as a function
of the non-dimensional time T , for the small-scale experiments. The solid line represents the
theoretical prediction of (3.20).
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Figure 8. Summary of the data for the non-dimensionalized current length, L, as a function
of the non-dimensional time, T , for the large-scale experiments. The solid line represents the
theoretical prediction of (3.20).

To see typical maximum magnitudes of these fluctuations refer to similar curves
shown in Davies et al. (1993), which were obtained in this way.

Figure 9 reveals that the data for all eight experiments collapse reasonably well for
times T > 25. It can be seen how the current velocity decreases with time T ; it is not
constant as predicted by our simple geostrophic model. For times 25 <T < 175 the
current is faster than predicted by a factor between about 1 and 1.5. In § 3 it was noted
that the current speed Ut

0 predicted by the model of Avicola & Huq (2002) is higher
by a factor 1.89 than the speed predicted by the present model. If the data in figure 9
were rescaled to account for this then the position of the dotted line, which indicates
exact agreement between experiment and theory, would shift to Ue

0/Ut
0 = 1.89 in the

present version of the figure. Hence, the velocity predicted by Avicola & Huq (2002)
lies substantially above the measured data points displayed in figure 9.
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Figure 9. The ratio of the measured non-dimensional current mean velocity Ue
0 and the

predicted velocity Ut
0 = 0.75, as a function of T . The numbers in the key are the values of q0

in cm3 s−1.

Note the behaviour displayed by the data in figure 9 during the initial phase of the
experiments, for times T < 25. Here the data points do not collapse: it can be seen that
the data points for experiments with different discharge rates q0 display qualitatively
different behaviour. For q0 � 900 cm3 s−1 the data points approach the common curve
for T � 25 from below, while they approach it from above for q0 � 1500 cm3 s−1.
The displayed data represent experiments with flow rates 200, 300, 400, 600, 900,

1500, 3000 and 3972 cm3 s−1 and the associated values of I are, respectively, 0.213,

0.231, 0.249, 0.270, 0.288, 0.313, 0.354 and 0.387. The change in behaviour occurs
between 900 and 1500 cm3 s−1 and, thus, in the interval 0.288 <I < 0.313. The
associated ranges of the Reynolds number Re(w0, u0) and the Ekman number Ek(h0)
are 10 650 <Re(w0, u0) < 13 943 and 1.22 × 10−4 <Ek(h0) < 1.98 × 10−4. However, the
rotation rate (Ω = 0.1571 rad s−1) and the reduced gravity (g′ ≈ 3.57 cm s−2) have
the same values for all the experiments in figure 9. Consequently, the interval
where the transition in the behaviour is observed may be different for a series
of experiments having different combinations of values of Ω and g′. We do not at
present have data from other appropriate series of experiments available to address
this issue in more detail.

4.4. Current height

4.4.1. Introductory remarks

Our model predicts that the current height h0 at the wall of the tank (see figure 2
and (3.15)) is independent of the x-coordinate. Its value is equal to the current depth
predicted by Avicola & Huq (2002) and the maximum depth in a geostrophic current
given in Horner-Devine et al. (2006). However, the videos recorded with camera 2
of figure 1, through the sidewall of the tank, reveal that the current height decreases
between the source region and the current head. A schematic illustration of the
observed height profile at the wall (y = 0), in the (x, z)-plane of figure 2, is shown in
figure 10.

The diagram in figure 10 represents the current at an instant immediately before
the end of the experiment, i.e. just before the current head returns to the source
after having travelled around the entire tank. Hence, the distance between the source
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Figure 10. A side-view of the current as recorded by video camera 2, shown in figure 1. The
diagram shows how the current height changes with the along-wall distance x from the source
to the current head, i.e. it gives the height profile at the wall (y = 0) in the (x, z)-plane of
figure 2.

and the head of the current corresponds to the circumference of the tank. It was
observed that the current height has a maximum, hm, just downstream of the source.
The distance x between the source and the position where the maximum height is
observed is around 1–5 cm in the small-scale facility and around 10–50 cm in the large-
scale facility. The maximum height hm is, typically, in the range 0.5 cm <hm < 9 cm for
the small-scale experiments and in the range 1.5 cm <hm < 50 cm for the large-scale
experiments. This height hm was observed to be constant throughout each experiment
and was used for comparison with the theoretical prediction of h0 given by (3.15) and
in non-dimensional form by (3.22).

4.4.2. Height profile of the currents along the wall of the tank

For the small-scale experiments we measured the maximum current height and the
current height at four further reference locations along the circumference of the tank.
The reference locations, identified as RL1–RL4 in figure 10, were positioned at 1.5,
2.5, 3.5 and 4.5 radians downstream of the source. It was not possible to obtain
corresponding data for the large-scale experiments by viewing through the sidewall
windows of the Coriolis Facility, as the dye in the current became too diluted at the
interface between the current and the ambient fluid, making it impossible to define
the current boundary reliably by visual inspection.

Figure 11 shows the along-wall height data obtained in the small-scale facility.
The figure displays the relative current height h(x)/hm as a function of the non-
dimensional distance x/(2πRS) from the source (RS , the radius of the small tank, is
0.4475 m). The four data points correspond to measurements at the four reference
locations. Each data point represents an average of the 66 measurements for the
individual experiments. In each case the data were collected at an instant just before
the end of the experiment, i.e. when the head of the current had propagated almost
around the entire circumference of the tank. The figure shows that the current height
at the wall decreases linearly over a large interval of the current, which extends at least
over the region 0.24 � x/(2πRs) � 0.73. In § § 4.2 and 4.3 it was found that the currents
are faster than predicted by the theory, during the early stages of an experiment. This
initial increased speed is a consequence of the decrease in the current height along
the wall of the tank.
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Figure 11. The relative current height, h(x)/hm, for the small-scale experiments as a
function of the non-dimensional distance x/(2πRS) from the source.
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Figure 12. Non-dimensional maximum current height near the source, H0 = hm/RD , as a
function of I . The numbers in the key are the values of q0 in cm3 s−1.

4.4.3. Scaling of the current height with the parameter I

In order to facilitate a comparison between the experiments and the theoretical
model of § 3, the measured maximum current height hm is identified with the current
height h0 predicted by (3.15). Figure 12 gives a summary of the measured values for
hm in non-dimensional form, in terms of H0 = hm/RD as a function of I . (Recall that
the current depths predicted by our present model, that predicted by the model of
Avicola & Huq (2002) and that defined by Horner-Devine et al. (2006) are the same.)

A least-squares fit to the data points for the small-scale and large-scale experiments
gives

He
0 = 2.10I 0.998, (4.1)

and is shown as the solid line in figure 12. The dashed line is the theoretical prediction
H0 = 2I 5/4 of (3.22). It can be seen that experiment and theory are overall in good
agreement; there is only a slight discrepancy between (3.22) and (4.1).
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Figure 13. The ratio of measured current height, He
0 , and theoretical height, Ht

0 , given by
(3.22) for the large-scale experiments as a function of I .
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Figure 14. The ratio of measured current height, He
0 , and theoretical height, Ht

0 , as given by
(3.22) for the small-scale experiments as a function of I .

Figures 13 and 14 identify the particular experiments responsible for this discre-
pancy between experiment and theory. The two figures display the ratio of the
measured non-dimensional height He

0 and the non-dimensional predicted height Ht
0

as a function of the non-dimensional parameter I . The data for the large-scale experi-
ments are shown in figure 13 while those for the small-scale experiments are shown
in figure 14. For good agreement between experiment and theory, He

0 /H t
0 = 1. In

both figures the data for different values of the rotation rate Ω are identified by
different types of marker. In order to facilitate an easy comparison between the data
for the large-scale and the small-scale experiments in these figures an envelope has
been drawn around the large-scale data of figure 13 and this envelope has been
superimposed onto figure 14.

Figures 13 and 14 reveal that for both large-scale and small-scale experiments
the agreement between experiment and theory improves substantially with increasing
values of the parameter I . For very low values, I < 0.05, the experimentally measured
value He

0 exceeds the predicted height Ht
0 by as much as 400 % while agreement

between experiment and theory is generally very good for 0.15 <I < 3.0. The data
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Figure 15. The ratio of the measured current height, He
0 , and the theoretical height, Ht

0 , given
by (3.22) as a function of the Ekman number, Ek(h0), defined by (3.30). A summary of all the
data for the large-scale and small-scale experiments is shown.

also show, in particular, that in both sets of experiments agreement with theory is
very good for runs with higher rotation rates while it is less favourable for the lower
rotation rates. This suggests that currents with low values of I are not governed by
geostrophic balance and, consequently, cannot be described accurately by our model.
It is these data points for low values of I coupled with low rotation rates which are
responsible for the deviation of the least-squares fit (4.1) from the predictions of our
model in (3.15) and (3.22).

Inspection of (3.23) reveals that experiments with low values of I are those for
which the discharge rate q0 is small and for which the reduced gravity g′ is large.
Reference to (3.15) shows that these currents are expected to be shallow. Hence, it is
to be expected that the motion of currents with decreasing values of I will be subject
to increasing viscous effects; this is verified in the following section.

4.4.4. Scaling of the current height with the Ekman number

The Ekman number Ek(h0) based on the current height h0 of (3.15) is defined
by (3.30). Figure 15 displays the ratio of the measured current height He

0 and the
theoretical height Ht

0 as a function of Ek(h0). The summary of all the data for the
large-scale and small-scale experiments is shown. The figure reveals that agreement
between experiment and theory is best for the smallest Ekman numbers, i.e when
viscous effects are negligible. Agreement deteriorates with increasing Ekman number,
i.e. when viscous effects become important. A comparison of the scalings for Ω, q0

and g′ in (3.23) and (3.30) reveals that the smallest values of I correspond to the
largest values of Ek(h0). Hence, the data points at higher values of Ek(h0) in figure 15
correspond to data points with lower values of I in figures 13 and 14.

The data in figure 15 collapse onto a single straight line. Hence, the ratio He
0 /H t

0

scales with the Ekman number Ek(h0). The solid line is a power-law least-squares fit
given by

He
0

Ht
0

= 3.45Ek(h0)
0.124. (4.2)
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Figure 16. Typical surface-velocity profiles obtained from the observation of small tracer
particles advected downstream with a current in the small-scale facility. The profiles were
collected at 1.5 radians, corresponding to 67 cm downstream of the source. The experimental
conditions are Ω = 1.0 rad s−1, g′ = 16 cm s−2, q0 = 20 cm3 s−1 yielding, I = 0.34. The time
interval �t between two successive profiles is 0.5 s.

4.5. Current width

4.5.1. Introductory remarks

Measuring the position of the current head and the current height is straightforward,
as seen in § § 4.2 and 4.4. However, measurement of the current width is more
involved since the edge of the current seen on the fluid surface is qualitatively
different depending the value of I ; this dependence was discussed in § 4.1.1.

In particular, for currents with low values of I the width identified and seen on
the fluid surface by the outline of the dyed fluid does not represent the current width
relevant to the dynamics of the geostrophic problem. This question is addressed by
considering the region where the bulk of the fluid motion in the current takes place.
To identify this region surface-velocity profiles for the currents were obtained.

4.5.2. Surface-velocity profiles

The surface velocity of the currents was determined by measuring the motion of
small tracer particles floating on the surface of the current. The tracer particles were
dropped onto the fluid surface in a straight line radially across the current. The
particles were then advected downstream with the local surface-flow velocity.

An example showing typical surface-velocity profiles obtained from a small-scale
experiment with I = 0.3449, a value similar to that of the current shown in figure 3(b),
is displayed in figure 16. The figure shows ten profiles collected after successive 0.5
second intervals. The boundary of the current indicated in figure 16 corresponds to the
visible boundary between the dyed current fluid, and the clear ambient fluid as seen
in figures 3 and 4. The width of the visible boundary is essentially constant during the
short observation period of 5 seconds. Figure 16 reveals that dye visualizations would
suggest a current width of approximately 16 cm for the example shown. However, the
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Figure 17. Photograph of the cross-section (in a (y, z)-plane; see figure 2) of a large-scale
current illuminated by a vertical light sheet, as illustrated in the diagram below the photograph.
The photograph was taken at approximately 0.844 radians, corresponding to 5.488 m,
downstream of the source during an experiment with Ω = 0.1571 rad s−1, g′ = 8.5 cm s−2,
q0 = 3000 cm3 s−1 and I = 0.216.

velocity profiles illustrate that the flow velocity is largest in a substantially narrower
near-wall zone which is only about 8–10 cm across. In this near-wall zone the current
is also deepest and, hence, this is the region where the bulk of the fluid motion takes
place. Consequently, the width of the near-wall zone is the appropriate measure of
the current width for the flow dynamics.

4.5.3. Cross-sectional illumination of currents

The discussion in § 4.5.2 illustrated that dye-visualization experiments overestimate
the current width relevant to the problem. This observation is further substantiated
by visualizations of the current cross-section in a (y, z)-plane; see figure 2. The photo-
graph in figure 17 displays such a visualization for a current in a large-scale experiment
with I =0.216. For this visualization the fluid released at the source contained
sodium fluorescein. A vertical light sheet intersected the current as illustrated below
the photograph. The light sheet was positioned at 0.844 radians, corresponding to
5.488 m downstream of the source. The bright near vertical line in the left-hand part
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of the photograph is due to light reflected from the wall of the tank; the very bright
horizontal and slightly curved line in the lower half of the photograph represents
light reflected from the bottom of the tank. The y-coordinate of figure 2 corresponds
approximately to the direction horizontally across the page.

Figure 17 shows that the current is deepest at the wall of the tank, as expected
from (3.10). We have not attempted quantitative comparisons between the parabolic
profile given by (3.10) and visualizations such as that in figure 17. The photograph
was taken by a camera positioned a few centimetres above the fluid surface and
angled slightly downwards. Consequently, the cross-section as it appears in figure 17
is slightly distorted.

Again, figure 17 suggests that the width of the main current is substantially smaller
than the apparent total width identified by the fluorescein illumination. There is a
clear boundary between the fluid which constitutes the main body of the current
and the adjacent fluid contaminated by fluorescein. This boundary is only seen on
visualizations of the cross-sections and is not visible when viewing the current from
above, as in figures 3(a–c) or figure 4. This corroborates the conclusion of § 4.5.2 that
data for the current width based on measuring the width seen on the liquid surface in
dye-visualization experiments give substantial overestimates. For example, the main
current shown in figure 17 is only about half as wide as the total apparent width
suggested by the fluorescein illumination. This is consistent with the discussion of
figure 16 in § 4.5.2 concerning how the surface-velocity profiles for a current with a
similarly low value of I suggest that the main current is only about half as wide as
the width indicated by the outline of the food colouring. The shallow surface layer
outside the main body of the current is fluid in the surface Ekman layer produced by
the (small) stress at the surface.

4.5.4. Error estimates for the measurement of the current width

For currents with low to intermediate values of I (figures 3a and 3b), measurements
of the width of the near-wall zone discussed in § 4.5.2 were used for comparison with
our model. Figure 16 shows that the transition between the near-wall zone and the
outer current zone is gradual. Hence, the definition of the width of the near-wall
zone involves a degree of ambiguity. Typical maximum errors resulting from this
uncertainty for the measurement of the current width from surface-velocity profiles
are estimated to be no larger than 10 %–15 %.

For low values of I (figure 3a) the current width was always measured by con-
sidering surface-velocity profiles only. However, for intermediate values of I (figure 3b)
an additional second measurement was taken. For these currents the experiments
revealed that the narrowest width, at the contraction where the water from the
gyre begins its motion along the wall, agrees well with the width obtained from
surface-velocity profiles. Because of this we measured both quantities for currents
with intermediate values of I and we then used their average as the current width for
comparison with the theory.

For high values of I one obtains the type of current shown in figure 3(c). For
these currents it is straightforward to measure the appropriate current width, which
is simply the width just downstream of the gyre. The currents with high values of
I in the small-scale facility are typically of the order of only 10–20 mm across. The
absolute measurement error for the width of the small-scale currents was of the order
of ± 4 mm, which corresponds to relative errors of at least 20 %–40 %. Corresponding
errors for currents with higher values of I , in the large-scale facility, are estimated to
be of the order of 10 %.
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RD , for the small-scale experiments. The numbers in the key are the values of q0 in cm3 s−1.

At high values of I there is another mechanism which can result in the data being
biased towards an overestimation the current width. At high values of I , i.e. when
g′ is small while q0 and Ω are large, the currents are deep and fast moving. For
such currents, shear instabilities appear on the boundary between current fluid and
ambient fluid. These instabilities can be seen in figure 3(c) in the region 0.2–1.0
radians downstream (two to ten sectors of the reference grid) of the source. The
figure reveals that the amplitudes of these instabilities are of the order of up to 10–
20 mm. This translates into 100 %–200 % of the total width of these narrow currents
in the small-scale facility. Together with the absolute measurement error, the total
relative measurement error can lie within roughly 100 %–300 % for the currents with
the highest values of I . The corresponding relative error for large-scale currents is
substantially smaller. The magnitude of the amplitudes of the shear instabilities for
currents with highest values of I in the large-scale facility is of the same magnitude as
in the small-scale facility. However, the currents in the large-scale facility are typically
at least about 200 mm across. Hence, the relative error associated with with the shear
instabilities is at least one order of magnitude smaller for the large-scale currents
than for the small-scale currents.

4.5.5. Scaling of the current width with the parameter I

Figure 18 displays the experimental data for the current width measured in the
small-scale experiments. The theoretical model in § 4 yields W = we

0/RD = 1. Hence,
good agreement between experiments and theory requires we

0 = RD , identified by the
solid line in figure 18. The figure reveals satisfactory agreement between experiment
and theory. The dotted line in figure 18 represents the theoretical prediction for
the current width from the model of Avicola & Huq (2002), which is given by
w0 = (1/

√
2)(g′q0/Ω

3)1/4 in our nomenclature. Figure 18 shows that the present model
describes the experimental data slightly better than that of Avicola & Huq (2002).

Figure 19 shows the ratio we
0/RD as a function of the non-dimensional parameter

I for the small-scale experiments. The figure suggests that the agreement between
experiment and theory generally tends to be better at lower values of I than at
higher ones. As discussed in § 4.5.4, currents with high I develop shear instabilities at
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Figure 19. The ratio of the measured and predicted current widths, we
0/RD , as a function of

I for the small-scale experiments. The numbers in the key are the values of q0 in cm3 s−1.
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Figure 20. The measured non-dimensional current width, we
0, as a function of the Rossby

deformation scale, RD , for the large-scale experiments. The numbers in the key are the values
of q0 in cm3 s−1.

the interface between current fluid and ambient fluid and it was seen that these can
introduce relative errors of order 100 %–300 % for the narrowest currents at highest
values of I in the small-scale facility. These large relative errors probably explain why
agreement between experiment and theory in figure 19 is generally better at lower
values of I rather than at higher ones.

Figure 20 displays the experimental data for the current width measured in the
large-scale experiments in a graph corresponding to that of figure 18 for the small-
scale experiments. The figure reveals that the agreement between experiment and
theory for the large-scale experiments is very good for currents with maximum widths
up to about 1.2 m but that it becomes somewhat less favourable for wider currents.
Corresponding to figure 18, the dotted line in figure 20 represents the theoretical
prediction for the current width from the model of Avicola & Huq (2002). For
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Figure 21. The ratio of the measured and predicted current widths, we
0/RD , as a function of

I for the large-scale experiments. The numbers in the key are the values of q0 in cm3 s−1.

narrower currents, figure 20 shows that the present model describes the experimental
data slightly better than the model of Avicola & Huq (2002). For very wide currents,
with we

0 � 150 cm, our model overpredicts the experimental data and the prediction
of Avicola & Huq (2002) appears to describe the experiments somewhat better.

Figure 21 shows the ratio we
0/RD as a function of the non-dimensional parameter

I for the large-scale experiments. The data show that the quality of the agreement
between experiment and theory is, essentially, the same over the entire interval
0 � I � 0.4 for which large-scale experiments were carried out. However, the data
scatter is somewhat higher for smaller than for higher values of I .

Figure 22 shows a summary of all data points for we
0/RD for the small-scale

and the large-scale experiments. The figure reveals that agreement is overall most
favourable for the large-scale experiments with low values of I . This observation can
be understood in terms of the measurement errors discussed in § 4.5.2. For small-scale
experiments at high values of I the shear instabilities at the current boundary lead
to very large relative errors. This is reflected by the data in figure 22 and this source
of error cannot be eliminated from the measurements. At lower values of I , when
currents are generally slow, errors from the shear instabilities are no longer significant.
The main source of error is now that associated with current fluid spilling out of
the main current and contaminating the ambient fluid, as discussed in connection
with figures 16 and 17. However, this source of error can be largely suppressed for
currents with low to intermediate values of I if one measures the current width, as
discussed in § 4.5.2. This leads to smaller errors and, hence, better agreement between
experiment and theory for low values of I .

4.5.6. Scaling of the current width with the Reynolds number

Figure 23 displays the summary of all data for we
0/RD from the large-scale and the

small-scale experiments as a function of Re(w0, u0), defined in (3.29). The data points
below about Re(w0, u0) = 5 × 103 are those for the small-scale experiments while those
above this value are from the large-scale experiments.

Figure 23 reveals that the best agreement between experiment and theory is in
the approximate range 103 � Re(w0, u0) � 5 × 104. The deterioration in agreement for
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0/RD , as a function of I . The numbers in the key are the values of

q0 in cm3 s−1.

102 103 104 105

Re (w0, u0)

10–1

100

101

3972
3000
1500
300–900
200

Large-scale data

28
20
10

3.18
Small-scale data

w
0e /R

D

Figure 23. Summary of all small-scale and large-scale data for the ratio of the measured
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0/RD , as a function of the Reynolds number Re(w0, u0). The

numbers in the key are the values of q0 in cm3 s−1.

Re(w0, u0) � 103 again reflects measurement errors. It does not reflect an increased
importance of viscous effects in comparison with the predictions of our inviscid model.
Comparison of figures 23 and 22 shows that the data points for Re(w0, u0) � 103

correspond to those with large values of I . These points are subject to large relative
measurement errors arising in association with the shear instabilities at the boundary
of the currents.

Figure 23 further indicates that agreement between experiment and theory for
the current width may deteriorate for the large-scale currents at higher Reynolds
numbers, roughly above Re(w0, u0) = 5 × 104. However, this observation is based on
a relatively small number of data points and may not be significant. The behaviour
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cannot be reflecting increased turbulent mixing of current fluid and ambient fluid at
their interface for high Reynolds numbers; turbulent mixing would tend to result in
overestimates for the experimentally measured current width we

0. Consequently one
would expect we

0/RD > 1, rather than we
0/RD < 1 as displayed by the data in the figure.

When viscous effects are important, the fluid on the current surface is no longer
governed by geostrophy. As a consequence this fluid can leak out of the main current.
This results in the current width seen on the fluid surface being greater than the
width relevant to the current dynamics. The current width is then no longer constant
because fluid draining out of the current spreads across the surface. The current width
as seen on the fluid surface thus becomes a function of time. Our observations have
shown that this is the case for low to intermediate values of I , i.e. for the two current
types shown in figures 3(a) and 3(b). As discussed earlier, we measured the growth of
the current width identified by the dye visualization experiments on the fluid surface,
as a function of time at various reference locations RLi (figure 10) distributed along
the wall of the tanks of the small-scale and the large-scale facilities. The data analysis
showed that the surface width at each reference location RLi grows roughly as, (t∗)0.5

where t∗ = t−tRL and tRL is the time of arrival of the current head at reference location
RLi . The result (t∗)0.5 confirms the corresponding measurements of Lentz & Helfrich
(2002, p. 264). In § § 4.2 and 4.3 it was observed that the currents slow down during
the later stages of each experiment. This deceleration is a consequence of the leakage
of fluid out of the main current. When fluid leaks out of the current the assumption
of mass conservation for the main current in (3.13) and (3.17) is no longer valid.

5. Froude number
In § 4.3 it was observed that the velocity of the current head decreases with time T .

We have calculated experimental values for the Froude number, Fr(Ti) = ue
0/

√
g′hm,

based on the measured current mean velocity ue
0 = li/ti and the measured maximum

depth hm near the source. The results obtained in this way are displayed in figures 24(a)
and 24(b) for the small-scale and the large-scale experiments, respectively. The
figures reveal that, for both sets of experiments, the Froude number is in the
approximate range 0.1 � Fr � 1.51, and they illustrate how Fr decreases with time
T . For the majority of runs the Froude number had value just below a 0.8 at the
beginning of the experiment. This is reflected in the two figures through the very high
concentrations of data points around T =0, Fr= 0.8.

In these figures the data points for the different runs have been grouped into three
different sets according to their values of the parameter I . Both figures reveal that
there is a general trend for the Froude number to adopt lower values for smaller
values of I . Low values of I correspond to high values of the Ekman number and,
hence, to the parameter regime where viscous effects become increasingly important
and where our inviscid model is no longer valid.

For the vast majority of all data points for the highest values of I (lowest Ek)
the Froude number lies within the interval 0.35 � Fr � 0.78. The solid lines, given by
Fr = 1.2T −0.22 and Fr =0.85T −0.09, interpolating the data points in figures 24(a) and
24(b) were determined by plotting all data in double-logarithmic representation and
then fitting lines through the regions displaying the highest concentrations of data
points by eye. These lines are meant to serve as a rough guideline summarizing the
behaviour of the data for the higher values of the parameter I . It is emphasized that
they do not represent least-squares interpolations. The dotted lines in figures 24(a)
and 24(b) serve to facilitate an easy comparison between the data for the small-scale
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Figure 24. Froude number F as a function of the non-dimensional time, T , for (a) the
small-scale experiments and (b) the large-scale experiments.

and large-scale experiments. The dotted line in figure 24(a) corresponds to the solid
line in figure 24(b) and vice versa.

Our experimental result, that the majority of data for the Froude number lie within
0.35 � Fr � 0.78, is overall in good agreement with the predicted value of Fr =0.5303
(3.27). Our values for the Froude number are lower than the value Fr ≈

√
2 = 1.41

obtained by Martin & Lane-Serff (2005), who extended the theory of Benjamin (1968)
to rotating currents, and they are also lower than the value Fr= 1 predicted by Shin
et al. (2004). In comparison, the dam-break experiments of Griffiths & Hopfinger
(1983) suggested that Fr = 1.3 ± 0.2 or Fr = 1.15 ± 0.1, depending on whether the
hydrostatic head hu or the depth hn of the current head was used to calculate the
Froude number. Similarly, Stern, Whitehead & Hua (1982) reported Fr= 1.6 for their
experiments at highest Reynolds numbers; they had predicted the Froude number
to be in the range 1.54 � Fr � 1.58. In § 3 we found that Fr= 1 if one uses the
expressions of Avicola & Huq (2002) to calculate the Froude number corresponding
to our expression (3.25). Since figures 24(a) and 24(b) reveal that the Froude number
is just below 0.8 for the majority of experiments for small times T , our experimental
data lie between our prediction and that of Avicola & Huq (2002). At the later stages
of the experiment the measured values of the Froude number more closely resemble
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the value predicted by our model. However, it should be emphasized that this does
not imply that our model necessarily describes the experiments better at larger T

than that of Avicola & Huq (2002). The reason for this is that the current slows down
because of the drainage of fluid from the main current due to the growing bulge
region near the source together with the additional drainage near the current surface
identified in § 4.5.6. Because of this drainage the assumption of volume conservation
underlying our model, and also the model of Avicola & Huq (2002), is no longer valid.

6. Summary and conclusions
Laboratory simulations investigating the influence of the rotation of the earth on

the dynamics of gravity-driven surface currents developing from fresh-water river
discharges into the ocean have been described. Two complementary studies with
experiments on substantially different spatial scales have been performed and the
data collected in both studies have been compared with each other.

A simple geostrophic model for the flow was developed to predict the current height,
width and velocity as a function of the relevant independent parameters governing
the flow. The scalings obtained are the same as those previously deduced by Davies
et al. (1993) and, more recently, by Lentz & Helfrich (2002) on the basis of scaling
arguments. However, since these authors used scaling arguments only, they were
unable to give values for the constants missing from their proportionality relations.
Our new model yields values for these constants and they have been compared with
corresponding values obtained by Avicola & Huq (2002) and Horner-Devine et al.
(2006) wherever possible. Our theoretical analysis yielded a set of non-dimensional
parameters suitable to summarize the measured data and to collapse the corresponding
results from large-scale and small-scale experiments onto single lines. Our predictions
are, generally, in good agreement with our experimental data. It is probably justified to
conclude that overall they are in slightly better agreement with the experiments than
the corresponding theoretical results of Avicola & Huq (2002) and Horner-Devine
et al. (2006).

For the derivation of our model we assumed that the flow is steady and that there
are no variations along the current. However, the experiments have shown that this
is not the case. Figure 11 revealed, for instance, that the current height decreases
from the source to the current head. In this respect our model is, consequently,
still incomplete. We presently do not have a definitive theoretical explanation why
the current height decreases. Neither do we know whether it would be possible to
incorporate these additional features into a refined version of our model which could
still be solved analytically. Since the height predicted by our model is the same as
that of Avicola & Huq (2002) and Horner-Devine et al. (2006), the theoretical results
of these authors are subject to the same discrepancies as our own in this respect. One
of our referees pointed out that a downstream pressure gradient may be required to
overcome the frictional resistance to the flow from the side wall and the fluid below.
While this may well be the case, an investigation would necessitate finding numerical
solutions of the flow problem, which was outside the scope of the present work.

For large rivers discharging into the ocean, the maximum volumetric-discharge rate
q0 is of the order of 104 m3 s−1 and the maximum effective-rotation rate Ω arising
from the rotation of the Earth is approximately 2π/86 400 s−1. A typical value for
the reduced gravity g′ is 22 cm s−2. Using these values and ν =0.01 cm2 s−1 for the
kinematic viscosity of water one determines an Ekman number Ek(h0) = 5.2 × 10−4,
a value I =0.0011 and a Reynolds number Re(w0, u0) = 4.1 × 109. Comparison with
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figure 15 shows that the Ekman number for currents in the natural environment is of
the order where very good agreement between experiment and theory for the current
height is expected. This is the region where currents are governed by geostrophy
and where the scaling relations from our model will hold. However, typical Reynolds
numbers for currents in the natural environment are much larger than the maximum
values, of about Re(w0, u0) = 2 × 105, which can be reached even in the large-scale
rotating tank. Figure 23 shows that it may be difficult to evaluate how accurately
the results of our theoretical analysis and our experiments would predict the width
of currents in nature. If, as is apparently indicated by figure 23, agreement between
experiment and theory would begin to deteriorate for Re(w0, u0) > 5 × 105 then the
results of even the largest possible laboratory experiments would not enable one to
reliably extrapolate laboratory results for current width in the natural environment.
However, currents in the natural environment are governed by geostrophy and, hence,
it appears unlikely that they would not roughly follow the derived overall scalings
for the current speed, depth and length. At present we do not have a definitive
explanation why the agreement between experiment and theory for the current width
in figure 23 seems to deteriorate slightly for larger Reynolds numbers. However, we
believe that this may reflect an artifact arising in connection with the difficulties
associated with measuring the current width accurately as discussed in § 4.5.

The small-scale experiments were carried out as part of a study funded by the
Natural Environment Research Council, UK. The large-scale experiments at the
Coriolis Facility were funded by the European Union through an Access to Major
Research Infrastructures grant. We would like to thank Dr Maria del Mar Flexas,
Dr Farzam Zoueshtiagh and the staff of the Coriolis Facility for their help and
assistance during the large-scale experiments.
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